

Государственная корпорация по атомной энергии «Росатом»
Федеральное государственное унитарное предприятие
РОССИЙСКИЙ ФЕДЕРАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР
Всероссийский научно-исследовательский институт экспериментальной физики

ЦЕНТР ИСПЫТАНИЙ СРЕДСТВ ИЗМЕРЕНИЙ ФГУП «РФЯЦ-ВНИИЭФ»

Аттестат аккредитации № RA.RU.311769

607188, Нижегородская обл. г. Саров, пр. Мира, д. 37 Телефон 83130 22224 Факс 83130 22232 E-mail: <u>shvn@olit.vniief.ru</u>

СОГЛАСОВАНО

Директор ООО «ГлобалТест»

М.п.

А.А. Кирпичев

«<u>21</u>» 12 2017

УТВЕРЖДАЮ

Руководитель ЦИ СИ, главный метролог ФГУП «РФЯЦ-ВНИИЭФ»

В.Н. Щеглов

2017

M.n.

Вибропреобразователи серии АР20ХХ

Методика поверки

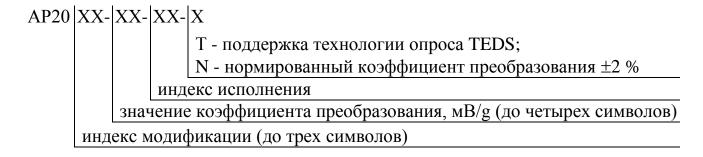
А3009.0235.МП-17

Содержание

1	Операции поверки	4
2	Средства поверки	4
3	Требования к квалификации поверителей	5
4	Требования безопасности	5
5	Условия поверки	6
6	Подготовка к проведению поверки	6
7	Проведение поверки	6
8	Оформление результатов поверки	9
	Приложение А (справочное) Перечень документов, на которые нны ссылки в тексте МП	10
	Приложение Б (справочное) Перечень принятых документов	10
	Приложение В (справочное) Перечень принятых документов	11

Настоящая методика поверки распространяется на вибропреобразователи серии AP20XX.

Вибропреобразователь серии AP20XX (далее по тексту - датчик) предназначен для для измерений вибрационных и ударных ускорений в системах технической диагностики и мониторинга, а также в лабораторных и научных исследованиях.


Принцип действия датчика основан на генерации электрического сигнала, пропорционального воздействующему ускорению.

В конструкции датчиков использована механическая схема с пьезоэлементом, работающим на сдвиг, и встроенный унифицированный усилитель, обеспечивающий широкий диапазон питающего напряжения (от +18 до +30 В) и тока (от 2 до 20 мА). Датчик AP2017 имеет кварцевый чувствительный элемент, работающий по компрессионной схеме.

В зависимости от диапазонов измерений и конструктивных особенностей датчики выпускаются в нескольких модификациях. Каждая модификация может иметь несколько исполнений, отличающихся номинальным значением коэффициента преобразования, типом соединителя или способом крепления к объекту контроля. Материал корпуса — нержавеющая сталь или титановый сплав.

Датчики могут поддерживать технологию опроса TEDS (Transducer Electronic Data Sheet), обеспечивающую возможность автоматического определения типа датчика и его технических характеристик в соответствии со стандартом IEEE P1451.4.

Структура обозначений датчиков (символы «Х» могут отсутствовать):

Данная методика поверки устанавливает методику первичной и периодической поверок датчика. Первичной поверке датчики подвергаются при выпуске из производства и после ремонта. Организация и проведение поверки в соответствии с действующим «Порядок проведения поверки средств измерений...».

Межповерочный интервал – 1 год.

Перечень документов, на которые даны ссылки в тексте методики поверки, приведен в приложении А.

Перечень принятых сокращений приведен в приложении Б.

1 Операции поверки

- 1.1 При проведении первичной и периодической поверок датчика должны быть выполнены операции, указанные в таблице 1.
- 1.2 При получении отрицательного результата какой-либо операции поверки дальнейшая поверка не проводится, и результаты оформляются в соответствии с 8.2.
- 1.3 Протокол поверки ведется в произвольной форме. При проведении периодической поверки допускается сокращать проверяемые режимы (диапазоны) измерений датчика в соответствии с потребностями потребителя, при этом в свидетельстве о поверке должна быть сделана запись об ограничении использования режимов (диапазонов) измерений.

Таблица 1 – Перечень операций при поверке

Harrisanananana	Номер пункта методики	Обязательность проведения при поверке			
Наименование операции		первич- ной	перио- дической		
1 Внешний осмотр	7.1	+	+		
2 Проверка электрического сопротивления изоляции	7.2*	+	-		
3 Опробование	7.3	+	+		
4 Проверка действительного значения коэффициента преобразования	7.4	+	+		
5 Проверка частотного диапазона и неравномерности частотной характеристики	7.5	+	+		
6 Проверка амплитудного диапазона и нелинейности амплитудной характеристики	7.6	+	-		
7 Проверка относительного коэффициента поперечного преобразования	7.7	+	-		
8 Определение частоты установочного резонанса	7.8	+	-		
9 Проверка основной относительной погрешности при измерении виброускорения	7.9	+	+		
*					

^{* -} только для модификаций с электрической изоляцией сигнальных выводов от корпуса

2 Средства поверки

- 2.1 При проведении поверки применяют СИ и оборудование, приведенные в таблице 2. Допускается использовать другие СИ и оборудование, обеспечивающие требуемые диапазоны и точности измерений.
- 2.2 Все применяемые СИ должны быть поверены и иметь действующие свидетельства о поверке.

Оборудование, необходимое для проведения испытаний, должно быть аттестовано согласно ГОСТ Р 8.568

Таблица 2 – Перечень СИ и оборудования, применяемых при поверке

Наименование СИ	Требуемые хара Диапазон измерений	актеристики Погрешность измерений	Рекомендуемый тип	Кол- во	Пункт МП
Поверочная виброустановка 2-го разряда по ГОСТ Р 8.800	от 0,5 до 20000 Гц; 400 м/с ²	±2,0 %	DVC-500 (per. № 58770-14)	1	7.3, 7.4, 7.5, 7.6, 7.7
Вторичный эталон единиц длины, скорости и ускорения при прямолинейном колебательном движении твердого тела в диапазоне значений частот от 0,1 до 20000 Гц и ускорений от 0,001 до 400 м/с ²	от 0,1 до 20000 Гц; 400 м/с ²	±0,2 %	ВЭТ 58-7-2016	1	7.51
Мегаомметр	от 10 до 1000 МОм	±10 %	E6-24/1 (per. № 47135-11)	1	7.2 ²
Установка баллистическая	от 1000 до 80000 м/c^2	±6,0 %	AP8001 (per. № 41845-09)	1	7.6 ²
Осциллограф цифровой	от 0,1 до 10 В	±3,0 %	TDS 2022C (per. № 48471-11)	1	7.8 ²
Источник питания постоянного тока	от 18 до 30 В; не менее 100 мА	±2,0 %	SPD-73606 (per. № 55897-13)	13	7.3, 7.4, 7.5,
Согласующее устройство	-	-	AG02	13	7.6, 7.7, 7.8

⁻ только для модификации АР2006 (рабочий диапазон частот от 0,1 до 2000 Гц);

3 Требования к квалификации поверителей

К проведению поверки допускается персонал, изучивший ЭД на датчик, данную методику поверки и имеющий опыт работы с оборудованием, перечисленным в таблице 2.

4 Требования безопасности

4.1 При проведении поверки необходимо руководствоваться «Правилами устройства установок» и «Правилами техники безопасности при эксплуатации электроустановок потребителей». Меры безопасности при подготовке и проведении измерений должны соответствовать требованиям ГОСТ 12.2.007.0 и правилам по охране труда ПОТ РМ-016.

² - только для первичной поверки;

³ - не требуется, если поверочная виброустановка оснащена входом, для подключения датчиков со встроенным усилителем (U_n = +(18...30) B; I_n = (2...20) мA), например: измерительный усилитель AP5110 (рег. № 57588-14), измерительный усилитель AP5200 (рег. № 53161-13) и т.д.

4.2 При проведении поверки должны быть выполнены все требования безопасности, указанные в ЭД на датчик, средства поверки и испытательное оборудование.

Все используемое оборудование должно иметь защитное заземление.

5 Условия поверки

При проведении поверки должны быть соблюдены следующие условия:

- температура окружающего воздуха от 18 до 25 °C;
- относительная влажность окружающего воздуха до 80 %;
- атмосферное давление не нормируется;
- напряжение питающей сети от 198 до 244 В;
- частота питающей сети от 49 до 51 Гц.

6 Подготовка к проведению поверки

6.1 Перед проведением поверки подготавливают СИ и оборудование к работе в соответствии с ЭД на них.

Крепление датчика проводят в соответствии с ГОСТ ИСО 5348.

6.2 Проверяют наличие действующих свидетельств о поверке на СИ, а также соответствие условий поверки разделу 5.

7 Проведение поверки

7.1 Внешний осмотр

При внешнем осмотре необходимо проверить:

- целостность корпуса датчика;
- состояние поверхностей (отсутствие вмятин, царапин, задиров);
- отсутствие повреждений соединительных жгутов и разъёмов.

При наличии вышеуказанных дефектов испытания не проводят до их устранения. Если дефекты устранить невозможно, датчик бракуют.

- 7.2 Проверка электрического сопротивления изоляции
- 7.2.1 Испытания проводят только для модификаций с электрической изоляцией сигнальных выводов от корпуса.

Перед проведением измерений снимают статический разряд с поверяемого датчика путем короткого замыкания сигнальных контактов (выводов) соединительного кабеля с корпусом соединителя.

Электрическое сопротивление изоляции измеряют между корпусом датчика и соединенными вместе сигнальными выводами при испытательном напряжении 100 В.

Мегаомметр, например, Е6-24/1, подключают к соединителю кабеля датчика через ответную часть соединителя.

7.2.2 Датчик считают выдержавшим испытания, если электрическое сопротивление изоляции между корпусом датчика и соединенными вместе сигнальными выводами составляет не менее 500 МОм.

7.3 Опробование

- 7.3.1 Опробование проводят на поверочной виброустановке 2-го разряда по ГОСТ Р 8.800. Датчик устанавливают сверху эталонного вибропреобразователя установки через технологический переходник. Включают и прогревают измерительные приборы в соответствии с ЭД на них.
- 7.3.2 Воспроизводят на частоте (200 \pm 2) Гц уровень СКЗ виброускорения (10,2 \pm 0,2) м/с² (5 м/с² для модификации AP2006).
- 7.3.3 Датчик считают работоспособным, если уровень выходного сигнала превышает уровень помех не менее чем в 10 раз (20 дБ).
 - 7.4 Проверку действительного значения коэффициента преобразования
- 7.4.1 Проверку действительного значения коэффициента преобразования проводят в соответствии с 10.11 ГОСТ Р 8.669 на частоте (200,0±0,1) Гц.

Примечание — При проведении периодической поверки допускается в качестве базовой использовать другие значения частот, например, 40, 80 или 160 Гц.

- 7.4.2 Датчик считают выдержавшим испытания, если отклонение действительного значения коэффициента преобразования от номинального значения, %, находится в пределах:
 - для исполнений AP20XX-XX-XX-XX-X ±10 %;
 - для исполнений AP20XX-XX-XX-XX-N ± 2 %.
- 7.5 Проверка частотного диапазона и неравномерности частотной характеристики
- 7.5.1 Проверка частотного диапазона и неравномерности частотной характеристики проводят в соответствии с 10.13 ГОСТ Р 8.669.

При проведении периодической поверки, в случае, когда используемый вибровозбудитель не обеспечивает определение коэффициента преобразования во всем частотном диапазоне, неравномерность частотной характеристики в низкочастотной области определяют расчётным путём по формуле

$$\gamma_i = \left(\frac{1}{\sqrt{\frac{1}{(2 \cdot \pi \cdot f \cdot \tau)^2} + 1}} - 1\right) \cdot 100,\tag{1}$$

где f - нижняя рабочая частота датчика, Γ ц;

т - постоянная времени, с, определяемая по формуле

$$\tau = R \cdot C, \tag{2}$$

где R - входное сопротивление встроенного предусилителя, $1 \cdot 10^9$ Ом;

С - суммарная ёмкость пьезокерамики и встроенного предусилителя, $1\cdot 10^{-9}$ Ф (3000 пФ для AP2006-XX-XX).

Неравномерность частотной характеристики в высокочастотной области определяют расчётным путём по формуле

$$\gamma_i = \left(\frac{1}{1 - (f_b / f_o)^2} - 1\right) \cdot 100,\tag{3}$$

где f_b - верхняя рабочая частота датчика, Γ ц;

 f_o - частота установочного резонанса датчика, Γ ц, измеренная по 7.8.

- 7.5.2 Датчик считают выдержавшим испытания, если неравномерность частотной характеристики находится в пределах $\pm 12,5$ %.
- 7.6 Проверка амплитудного диапазона и нелинейности амплитудной характеристики
- 7.6.1 Проверка амплитудного диапазона и нелинейности амплитудной характеристики проводят в соответствии с 10.14 ГОСТ Р 8.669.
- 7.6.2 Датчик считают выдержавшим испытания, если нелинейность амплитудной характеристики находится в пределах ± 4 %.
- 7.7 Проверка относительного коэффициента поперечного преобразования
- 7.7.1 Проверку относительного коэффициента поперечного преобразования проводят в соответствии с 10.12 ГОСТ Р 8.669.
- 7.7.2 Датчик считают выдержавшим испытания, если относительный коэффициент поперечного преобразования составляет:
 - не более 3 % для исполнений AP2030-03, AP2031-01;
 - не более 5 % для остальных датчиков серии AP20XX.
- 7.8 Проверка основной относительной погрешности датчика при измерении виброускорения
- 7.8.1 Проверку основной относительной погрешности датчика δ , %, при измерении виброускорения проводят по формуле

$$\delta = \pm 1.1 \cdot \sqrt{\delta_O^2 + \delta_H^2 + \delta_{KT}^2 + \delta_H^2 + \gamma_{YX}^2 + \delta_{AX}^2} , \qquad (4)$$

где 1,1 - коэффициент, определяемый доверительной вероятностью 0,95;

 δ_O — погрешность эталонного средства измерений (из описания на поверочную виброустановку), %;

 δ_{Π} – погрешность, вызванная наличием поперечного движения вибростола поверочной виброустановки, %, определяемая по формуле

$$\delta_{II} = \frac{K_{IIBC} \cdot K_{BMII}}{100},\tag{5}$$

где K_{IIBC} – коэффициент поперечного движения вибростола поверочной виброустановки, %;

 $K_{BИ\Pi}$ — относительный коэффициент поперечного преобразования поверяемого датчика по 7.7, %;

 $\delta_{\!K\!\Gamma}$ – погрешность, вызванная наличием высших гармонических составля-

ющих в законе движения вибростола поверочной виброустановки, %, определяемая по формуле

$$\delta_{\varepsilon} = \left(\sqrt{1 + \left(\frac{K_{\varepsilon.\kappa.}}{100}\right)^2} - 1\right) \cdot 100, \tag{6}$$

где $K_{2.\kappa}$ — значение коэффициента гармоник в законе движения вибростола поверочной виброустановки (из описания на поверочную виброустановку), %;

 δ_{U} – погрешность измерений выходного напряжения датчика (определяется классом точности применяемого регистратора и согласующего усилителя), %;

 γ_{VX} – неравномерность частотной характеристики по 7.5, %;

 δ_{AX} – нелинейность амплитудной характеристики по 7.6, %.

7.8.2 Датчик считают выдержавшим испытания, если основная относительная погрешность при измерении виброускорения находится в пределах ± 15 %.

Примечания

- 1 При проведении периодической поверки значения относительного коэффициента поперечного преобразования K_{BUII} , %, и нелинейности амплитудной характеристики δ_{AX} , %, определяются по паспортным данным.
- 2 При оформлении результатов поверки относительную погрешность датчика допускается указывать в нескольких частотных и амплитудных диапазонах. Пример приведен в приложении В.

8 Оформление результатов поверки

- 8.1 При положительных результатах поверки оформляют свидетельство о поверке датчика по форме, установленной в действующих нормативных документах. Знак поверки наносится на свидетельство о поверке и (или) в паспорт.
- 8.2 Датчик, не прошедший поверку, к применению не допускают. На него выдают извещение о непригодности по форме, установленной в действующих нормативных документах.

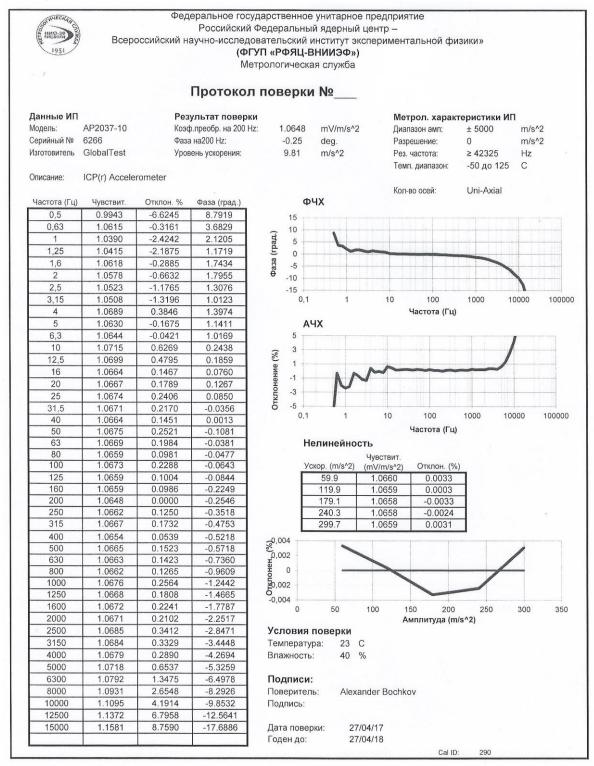
Приложение А (справочное) Перечень документов, на которые даны ссылки в тексте МП

Обозначение доку- мента, на который да- на ссылка	Наименование документа, на который дана ссылка
ГОСТ 12.2.007.0-75	ССБТ. Изделия электротехнические. Общие требования безопасности
ГОСТ ИСО 5348-2002	Вибрация и удар. Механическое крепление акселерометров
ГОСТ Р 8.568-97	ГСИ. Аттестация испытательного оборудования. Основные положения
ГОСТ Р 8.669-2009	ГСИ. Виброметры с пьезоэлектрическими, индукционными и вихретоковыми преобразователями. Методика поверки
ГОСТ Р 8.800-2012	ГСИ. Государственная поверочная схема для средств измерений виброперемещений, виброскорости и виброускорения в диапазоне частот от $1 \cdot 10^{-1}$ до $2 \cdot 10^4$ Гц
	Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке. Введен приказом Минпромторга России от 02 июля 2015г. № 1815
ПОТ РМ-016-2001	Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок

Приложение Б (справочное) Перечень принятых сокращений

МП – методика поверки;

СИ – средство(а) измерений;


СКЗ – среднее квадратическое значение;

ЭД – эксплуатационная документация.

Приложение В (справочное)

Пример записи на оборотной стороне свидетельства

В.1 Пример протокола периодической поверки вибропреобразователя серии AP20XX приведен на рисунке В.1. Периодическая поверка выполнена метрологической службой РФЯЦ-ВНИИЭФ с использованием вторичного эталона единиц длины, скорости и ускорения при прямолинейном колебательном движении твердого тела в диапазоне значений частот от 0,1 до 20000 Γ ц и ускорений от 0,001 до 400 м/с² ВЭТ 58-7-2016.

Рисунок В.1 – Протокол периодической поверки АР2037-10 зав. № 6266

В.2 По результатам периодической поверки датчика AP2037-10 зав. № 6266 в соответствии с ГОСТ Р 8.669 на оборотной стороне свидетельства может быть сделана следующая запись:
1 Действительное значение коэффициента преобразования на базовой частоте 200 Гц, K_{∂} , мВ/(м·с ⁻²)
- в диапазоне частот от 0,5 до 15000 Гц, $\gamma_{\text{ЧX}}$, %, в пределах±8,8;
- в диапазоне частот от 1 до 10000 Гц, γ_{YX} , %, в пределах±4,2;
- в диапазоне частот от 10 до 5000 Гц, γ_{qx} , %, в пределах±0,7 3 Границы основной относительной погрешности вибропреобразователя при доверительной вероятности 0,95:
- в диапазоне частот от 0,5 до 15000 Гц, δ , %,
При расчете основной относительной погрешности в соответствии с формулой (4) принимались следующие значения: $\delta_O \le 0.5\%$; $K_{\Pi BC} \le 10\%$; $K_{BM\Pi} \le 5\%$; $K_{\mathcal{E.K.}} \le 10\%$; $\delta_{AX} \le 4\%$; $\delta_{U} \le 0.2\%$.
В.3 Если датчик используется только в диапазоне частот от 10 до 5000 Гц и диапазоне амплитуд до 300 м/с 2 , то по заявлению пользователя на оборотной стороне свидетельства может быть сделана следующая запись:
1 Действительное значение коэффициента преобразования на базовой частоте 200 Гц, K_{∂} , мВ/(м·с ⁻²)
до 5000 Гц, $\gamma_{\text{чx}}$, %, в пределах